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Communication
Explicit Semianalytical Expressions of Sensitivity Matrices for the

Reconstruction of 1-D Planarly Layered TI Media
Illuminated by 3-D Sources

Feng Han , Jianliang Zhuo , Shan Lu, Jianwen Wang , and Qing Huo Liu

Abstract— In this communication, the sensitivity matrices for the
reconstruction of 1-D planarly layered transverse isotropic (TI) media
illuminated by electromagnetic wave excited by 3-D electric or magnetic
current sources are derived based on the transmission-line network
analogy. The elements of the matrices are expressed analytically in the
vertical z-direction but are in the form of Sommerfeld integration in the
horizontal x y-plane. The derived expressions are useful for the inversion
of dielectric parameters and boundary positions of 1-D layered TI media.

Index Terms— Planarly layered media, sensitivity matrices, transver-
sally isotropic.

I. INTRODUCTION

Electromagnetic (EM) scattering and inverse scattering are ubiqui-
tous in modern civilian and military activities. The major applications
of EM inverse scattering include microwave imaging [1], radar remote
sensing [2], geophysical exploration [3], and so on. The forward
scattering is to map the model parameters to receiver responses, while
the inverse scattering is to infer the model parameters from receiver
responses. For a rigorous EM inversion problem, its intrinsic nonlin-
earity always requires iterations. As a result, the sensitivity matrix of
the data vector with respect to the vector of model parameters, that
is, the first-order derivative of the forward computation model to the
model parameters, is of great importance. In literature, the sensitivity
matrix is also called Fréchet derivative matrix or Jacobian matrix.

In many EM inversion applications such as ground-penetrating
radar (GPR) [4], airborne transient EMs (TEMs) [5], semiairborne
TEM [3], logging-while-drilling (LWD) [6], and the induction log-
ging [7], the simplest model of the underground structure is the 1-D
planarly layered medium. Meanwhile, the uniaxial anisotropy (also
called transverse isotropy) is always taken into account. However,
the sources are 3-D. Consequently, the evaluation of the sensitivity
matrix for 1-D layered media illuminated by 3-D sources requires
integration in the horizontal xy-plane. Related results have been
presented in several previous works. For example, in [3], the Fréchet
derivative was derived for a horizontal electric line source. However,
it is only valid for isotropic media and not applicable to uniaxial
anisotropy. In [7] and [8], partial semianalytical expressions of the
Fréchet derivatives in the double-integral forms were given for a
magnetic dipole source.

In this communication, we present the semianalytical expressions
of the sensitivity matrices for both electric and magnetic sources with
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Fig. 1. Geometry structure of the 1-D planarly layered medium.

the arbitrary polarization based on the transmission-line network anal-
ogy [9]. The analytical expressions in the z-direction are explicitly
given. In the horizontal xy-plane, the expressions are in the form
of Sommerfeld integration which can be efficiently computed using
the Gaussian quadratures [10]. This communication is organized as
follows. In Section II, the problem is formulated. The sensitivity
matrices for electric sources and magnetic sources are derived in
Sections III and IV, respectively. The analytical solutions of the
integration of dz are given in Section V. In Section VI, the sen-
sitivity matrices for the layer boundaries are derived. In Section VII,
the implementation of numerical integration is discussed. Finally,
in Section VIII, the conclusion is drawn.

II. PROBLEM FORMULATION

As shown in Fig. 1, the transverse isotropic (TI) medium is 1-D
layered and the boundary position of each layer is denoted by zn . The
electric and magnetic sources can be placed inside an arbitrary layer.
Maxwell’s equations with the electric and magnetic sources J and M
are expressed as

∇ × E = − jωμrμ0H − M (1a)
∇ × H = jω�r ε0E + J (1b)

where �r is the complex relative permittivity and expressed as

�r = diag{�h, �h , �v } = diag{εh, εh , εv } + 1

jωε0
diag{σh , σh , σv }

(2a)
μr = diag{μh , μh , μv } (2b)

where � is a complex number and ε is a real number. The E- and H
fields at a receiver can be evaluated by

E =
�

V
GEJ(r, r�) · J(r�)dr� +

�
V

GEM(r, r�) · M(r�)dr� (3a)

H =
�

V
GHJ(r, r�) · J(r�)dr� +

�
V

GHM(r, r�) · M(r�)dr� (3b)

where GEJ, GEM, GHJ, and GHM are the layered medium dyadic
Green’s functions (DGFs) and derived based on the transmission-line
network analogy [9]. Now, assume the �r in the nth layer has a small
perturbation δ�r = diag{δ�h , δ�h , δ�v } and this causes the field
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perturbations δE and δH at the receiver. They can be evaluated by
taking variations of two sides of (1)

∇ × δE = − jωμrμ0δH (4a)

∇ × δH = jω�rε0δE + jωδ�rε0E. (4b)

By comparing (1) and (4), we can easily find that the perturbations
δE and δH at the receiver are excited by the equivalent electric
source J� = jωδ�r ε0E locating inside the nth layer. In EM inversion
problems, the field perturbation caused by unit changes in model para-
meters, for example, the variation in dielectric parameter, is called
the sensitivity matrix or Fréchet derivative. The field perturbations
δE and δH can be compactly written as

δE = �
FE

J + FE
M
� · jωε0δ�r

= jωε0

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Fex
J,h Fex

J,v

Fey
J,h Fey

J,v

Fez
J,h Fez

J,v

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Fex
M,h Fex

M,v

Fey
M,h Fey

M,v

Fez
M,h Fez

M,v

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ·
�

δ�h
δ�v

�

(5a)

δH = �
FH

J + FH
M
� · jωε0δ�r

= jωε0

⎛
⎜⎜⎝
⎡
⎢⎢⎣

Fhx
J,h Fhx

J,v

Fhy
J,h Fhy

J,v

Fhz
J,h Fhz

J,v

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Fhx
M,h Fhx

M,v

Fhy
M,h Fhy

M,v

Fhz
M,h Fhz

M,v

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ·
�

δ�h
δ�v

�

(5b)

where FE
J , FE

M, FH
J , and FH

M are the sensitivity matrices for the per-
turbations of electric and magnetic fields at the receiver, respectively,
when the excitation sources are electric and magnetic, respectively.
One should note that each element of the matrix is the summation
of three terms since J and M always have three components. For
example, Fhy

M,h = Fhy
Mx,h + Fhy

My,h + Fhy
Mz,h represents the sensitivity

of Hy at the receiver with respect to the small perturbation of δ�h in
the nth layer when the medium is illuminated by the magnetic source
M = x̂ Mx + ŷMy + ẑMz. Therefore, there are totally 72 components
to evaluate for the sensitivity matrices. In the following, we assume
that the transmitter is an infinitesimal dipole source and locates in
the ms th layer, and its position is denoted as rs = x̂ xs + ŷ ys + ẑzs .
The receiver locates in the mr th layer and its position is denoted
as rr = x̂ xr + ŷ yr + ẑzr . The nth layer has a perturbation of δ�r
and an arbitrary field point inside it is denoted as r = x̂ x + ŷ y + ẑz.
In addition, there is a 2-D Fourier transform relationship between the
spatial domain layered DGF and the spectral domain DGF which is
written as [9]

GEJ(r, r�) = 1

4π2

�� +∞
−∞

G̃EJ(kρ ; z, z�)e− jkρ ·ρdkx dky (6)

where G̃EJ is the spectral domain DGF, r and r� represent the field
point and source point, respectively, ρ = x̂(x − x �) + ŷ(y − y�) is
the horizontal distance vector between the source point and the field
point, and kρ = x̂kx + ŷky is the horizontal wave vector. The other
three DGFs in (3) have similar transforms.

III. SENSITIVITY MATRICES DUE TO AN ELECTRIC DIPOLE

In virtue of (3a) and (4), the electric field perturbation at rr induced
by the equivalent electric source J� in the nth layer is

δE(rr) =
� zn

zn−1

dz
�� +∞

−∞
dxdyGEJ(rr, r) · J�(r)

=
� zn

zn−1

dz
�� +∞

−∞
dxdyGEJ(rr, r) · jωδ�r ε0E(r). (7)

However, the E(r) in the nth layer is excited by the dipole source
locating at rs. So, we have

E(r) = GEJ(r, rs) · Iδ(r − rs). (8)

Based on (6) and (8), (7) can be further derived

δE(rr) = jωε0

16π4

� zn

zn−1

dz
�� +∞

−∞
dxdy

�� +∞
−∞

dkx dky

× G̃EJe− j [kx (xr −x)+ky (yr−y)] · δ�r

�� +∞
−∞

dk�
x dk�

y

× G̃EJe− j
�
k�

x (x−xs)+k�
y (y−ys)

�
· Iδ(r − rs). (9)

Using identity (A1) given in the Appendix and invoking the
diagonal property of δ�r , we can obtain

δE(rr) = jωε0

4π2

� zn

zn−1

dz
�� +∞

−∞
dkx dkye− j [kx (xr −xs)+ky (yr −ys)]

× G̃EJ(rr, r) · (G̃EJ(r, rs) · Iδ(r − rs)) ◦ [δ�h δ�h δ�v ]T

(10)

where ◦ represents the Hadamard product and T denotes the matrix
transpose. Following the similar procedure, we obtain the magnetic
field perturbation at rr:

δH(rr) = jωε0

4π2

� zn

zn−1

dz
�� +∞

−∞
dkx dkye− j [kx (xr −xs)+ky (yr −ys)]

× G̃HJ(rr, r) · (G̃EJ(r, rs) · Iδ(r − rs)) ◦ [δ�h δ�h δ�v ]T

(11)

where G̃EJ and G̃HJ are derived using the transmission-line network
analogy, and their detailed mathematical expressions are given in (28)
and (29) of [9]. Now, use the formula given in (A2) and the integral
identity given in (A3) of the Appendix, and assume the electric
dipole source locating at rs is polarized in x̂-, ŷ-, and ẑ-directions,
respectively. Based on (10) and (11), we can derive the elements of
the sensitivity matrices in (5). If the electric dipole is x̂ polarized,
they are as follows:

Fex
J x,h = ��V e

i V e
i F1 + V h

i V h
i F2

�
(12a)

Fex
J x,v = 1

ω2ε2
0�2

v (r)
�
�

V e
v I e

i

�
J0cos2φ − J1

kρρ
cos2φ

�
k3
ρ

�
(12b)

Fey
J x,h = 1

2
�
��

V e
i V e

i − V h
i V h

i
��

J0 − 2J1

kρρ

�
sin2φkρ

�
(12c)

Fey
J x,v = 1

2ω2ε2
0�2

v (r)
�
�

V e
v I e

i

�
J0 − 2J1

kρρ

�
sin2φk3

ρ

�
(12d)

Fez
J x,h = 1

ωε0�v (rr)
��I e

i V e
i ( j J1)cosφk2

ρ

�
(12e)

Fez
J x,v = 1

ω3ε3
0�2

v (r)�v (rr)
��I e

v I e
i ( j J1)cosφk4

ρ

�
(12f)

Fhx
J x,h = 1

2
�
��

I h
i V h

i − I e
i V e

i
� �

J0 − 2J1

kρρ

�
sin2φkρ

�
(12g)

Fhx
J x,v = − 1

2ω2ε2
0�2

v (r)
�
�

I e
v I e

i

�
J0 − 2J1

kρρ

�
sin2φk3

ρ

�
(12h)

Fhy
J x,h = ��I e

i V e
i F1 + I h

i V h
i F2

�
(12i)

Fhy
J x,v = 1

ω2ε2
0�2

v (r)
�
�

I e
v I e

i

�
J0cos2φ − J1

kρρ
cos2φ

�
k3
ρ

�
(12j)

Fhz
J x,h = 1

ωμ0μv(rr)
��V h

i V h
i ( j J1)sinφk2

ρ

�
(12k)

where F1 = (J0cos2φ − (J1/kρρ)cos2φ)kρ and F2 = (J0sin2φ +
(J1/kρρ)cos2φ)kρ . If the electric dipole is ŷ polarized, they are
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as follows:
Fex

J y,h = Fey
J x,h (13a)

Fex
J y,v = Fey

J x,v (13b)

Fey
J y,h = ��V h

i V h
i F1 + V e

i V e
i F2

�
(13c)

Fey
J y,v = 1

ω2ε2
0�2

v (r)
�
�

V e
v I e

i

�
J0sin2φ + J1

kρρ
cos2φ

�
k3
ρ

�
(13d)

Fez
J y,h = 1

ωε0�v (rr)
��I e

i V e
i ( j J1)sinφk2

ρ

�
(13e)

Fez
J y,v = 1

ω3ε3
0�2

v (r)�v (rr)
��I e

v I e
i ( j J1)sinφk4

ρ

�
(13f)

Fhx
J y,h = ��I h

i V h
i F1 + I e

i V e
i F2

�
(13g)

Fhx
J y,v = − 1

ω2ε2
0�2

v (r)
�
�

I e
v I e

i

�
J0sin2φ + J1

kρρ
cos2φ

�
k3
ρ

�
(13h)

Fhy
J y,h = −Fhx

J x,h (13i)

Fhy
J y,v = −Fhx

J x,v (13j)

Fhz
J y,h = − 1

ωμ0μv(rr)
��V h

i V h
i ( j J1)cosφk2

ρ

�
. (13k)

If the electric dipole is ẑ polarized, they are as follows:

Fex
J z,h = 1

ωε0�v (rs)
��V e

i V e
v ( j J1)cosφk2

ρ

�
(14a)

Fex
J z,v = 1

ω3ε3
0�2

v (r)�v (rs)
��V e

v I e
v ( j J1)cosφk4

ρ

�
(14b)

Fey
J z,h = 1

ωε0�v (rs)
��V e

i V e
v ( j J1)sinφk2

ρ

�
(14c)

Fey
J z,v = 1

ω3ε3
0�2

v (r)�v (rs)
��V e

v I e
v ( j J1)sinφk4

ρ

�
(14d)

Fez
J z,h = 1

ω2ε2
0�v (rr)�v (rs)

��I e
i V e

v (J0)k
3
ρ

�
(14e)

Fez
J z,v = 1

ω4ε4
0�2

v (r)�v (rr)�v (rs)
��I e

v I e
v (J0)k

5
ρ

�
(14f)

Fhx
J z,h = − 1

ωε0�v (rs)
��I e

i V e
v ( j J1)sinφk2

ρ

�
(14g)

Fhx
J z,v = − 1

ω3ε3
0�2

v (r)�v (rs)
��I e

v I e
v ( j J1)sinφk4

ρ

�
(14h)

Fhy
J z,h = 1

ωε0�v (rs)
��I e

i V e
v ( j J1)cosφk2

ρ

�
(14i)

Fhy
J z,v = 1

ω3ε3
0�2

v (r)�v (rs)
��I e

v I e
v ( j J1)cosφk4

ρ

�
. (14j)

In the above (12)–(14), Fhz
J x,v , Fhz

J y,v , Fhz
J z,h , and Fhz

J z,v are
not listed because they are equal to zero. The expression �{} =
(1/2π)

� zn
zn−1

�+∞
0 {}dkρdz denotes the double integral, J0 =

J0(kρρ) and J1 = J1(kρρ) are the zeroth- and first-order
Bessel functions, respectively, with the argument kρρ, ρ =�

(xr − xs )
2 + (yr − ys)

2 is the horizontal distance between the
dipole source and the receiver, and �v (rs), �v (r), and �v (rr) are the �v

values at the positions of rs, r, and rr, respectively. The first term of
the multiplication of the voltage and current terms is determined by zr
and z, while the second term is determined by z and zs . For example,
in (12b), V e

v I e
i = V e

v (zr , z)I e
i (z, zs ). The superscript e stands for the

TM mode, while h stands for the TE mode. V e
v (zr , z) represents the

TM component of the spectral domain transverse electric field and
is denoted by the voltage V measured at zr excited by 1 V series
voltage source v locating at z. I e

i (z, zs) represents the TM component
of the spectral domain transverse magnetic field and is denoted by
the current I measured at z excited by a 1 A shunt current source i

locating at zs . They are shown in Fig. 4 of [9] and their evaluation
can be found in (62)–(70) of [9]. The analogy between the true dipole
sources and the voltage source v and the current source i is shown
in Fig. 2 of [9], and their mathematical relationships are given in
(19) of [9]. One should note that the order of the arguments of the
voltage or current cannot be directly interchanged. The reciprocity
theorem must be applied, which will be discussed in Section IV.

IV. SENSITIVITY MATRICES DUE TO A MAGNETIC DIPOLE

If the layered TI medium is illuminated by the EM wave excited
by a magnetic dipole source M = �δ(r − rs), we can follow the
similar procedure in (8)–(11) and come to the field perturbations:

δE(rr) = jωε0

4π2

� zn

zn−1

dz
�� +∞

−∞
dkx dkye− j [kx (xr −xs)+ky (yr −ys)]

× G̃EJ(rr, r) · (G̃EM(r, rs) · �δ(r − rs))

◦ [δ�h δ�h δ�v ]T (15)

δH(rr) = jωε0

4π2

� zn

zn−1

dz
�� +∞

−∞
dkx dkye− j [kx (xr −xs)+ky (yr −ys)]

× G̃HJ(rr, r) · (G̃EM(r, rs) · �δ(r − rs))

◦ [δ�h δ�h δ�v ]T . (16)

Then, the elements of the sensitivity matrices in (5) can be found
similarly. If the magnetic dipole is x̂ polarized, they are as follows:

Fex
Mx,h = 1

2
�
��

V h
i V h

v − V e
i V e

v

� �
J0 − 2J1

kρρ

�
sin2φkρ

�
(17a)

Fex
Mx,v = − 1

2ω2ε2
0�2

v (r)
�
�

V e
v I e

v

�
J0 − 2J1

kρρ

�
sin2φk3

ρ

�
(17b)

Fey
Mx,h = −��V h

i V h
v F1 + V e

i V e
v F2

�
(17c)

Fey
Mx,v = − 1

ω2ε2
0�2

v (r)
�
�

V e
v I e

v

�
J0sin2φ + J1

kρρ
cos2φ

�
k3
ρ

�
(17d)

Fez
Mx,h = − 1

ωε0�v (rr)
��I e

i V e
v ( j J1)sinφk2

ρ

�
(17e)

Fez
Mx,v = − 1

ω3ε3
0�2

v (r)�v (rr)
��I e

v I e
v ( j J1)sinφk4

ρ

�
(17f)

Fhx
Mx,h = ��I h

i V h
v F1 + I e

i V e
v F2

�
(17g)

Fhx
Mx,v = 1

ω2ε2
0�2

v (r)
�
�

I e
v I e

v

�
J0sin2φ + J1

kρρ
cos2φ

�
k3
ρ

�
(17h)

Fhy
Mx,h = 1

2
�
��

I h
i V h

v − I e
i V e

v

��
J0 − 2J1

kρρ

�
sin2φkρ

�
(17i)

Fhy
Mx,v = − 1

2ω2ε2
0�2

v (r)
�
�

I e
v I e

v

�
J0 − 2J1

kρρ

�
sin2φk3

ρ

�
(17j)

Fhz
Mx,h = 1

ωμ0μv(rr)
��V h

i V h
v ( j J1)cosφk2

ρ

�
. (17k)

If the magnetic dipole is ŷ polarized, they are as follows:

Fex
My,h = ��V e

i V e
v F1 + V h

i V h
v F2

�
(18a)

Fex
My,v = 1

ω2ε2
0�2

v (r)
�
�

V e
v I e

v

�
J0cos2φ− J1

kρρ
cos2φ

�
k3
ρ

�
(18b)

Fey
My,h = −Fex

Mx,h (18c)

Fey
My,v = −Fex

Mx,v (18d)

Fez
My,h = 1

ωε0�v (rr)
��I e

i V e
v ( j J1)cosφk2

ρ

�
(18e)

Fez
My,v = 1

ω3ε3
0�2

v (r)�v (rr)
��I e

v I e
v ( j J1)cosφk4

ρ

�
(18f)
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Fhx
My,h = Fhy

Mx,h (18g)

Fhx
My,v = Fhy

Mx,v (18h)

Fhy
My,h = ��I e

i V e
v F1 + I h

i V h
v F2

�
(18i)

Fhy
My,v = 1

ω2ε2
0�2

v (r)
�
�

I e
v I e

v

�
J0cos2φ − J1

kρρ
cos2φ

�
k3
ρ

�
(18j)

Fhz
My,h = 1

ωμ0μv(rr)
��V h

i V h
v ( j J1)sinφk2

ρ

�
. (18k)

If the magnetic dipole is ẑ polarized, they are as follows:

Fex
Mz,h = 1

ωμ0μv(rs)
��V h

i V h
i ( j J1)sinφk2

ρ

�
(19a)

Fey
Mz,h = − 1

ωμ0μv(rs)
��V h

i V h
i ( j J1)cosφk2

ρ

�
(19b)

Fhx
Mz,h = 1

ωμ0μv(rs)
��I h

i V h
i ( j J1)cosφk2

ρ

�
(19c)

Fhy
Mz,h = 1

ωμ0μv(rs)
��I h

i V h
i ( j J1)sinφk2

ρ

�
(19d)

Fhz
Mz,h = 1

ω2μ2
0μv(rr)μv (rs)

��V h
i V h

i (J0)k
3
ρ

�
. (19e)

In the above (17)–(19), Fhz
Mx,v , Fhz

My,v , Fex
Mz,v , Fey

Mz,v , Fez
Mz,h ,

Fez
Mz,v , Fhx

Mz,v , Fhy
Mz,v , and Fhz

Mz,v are not listed because they are
equal to zero.

V. ANALYTICAL SOLUTIONS FOR INTEGRALS OF dz

In the above (12)–(14) and (17)–(19),
� zn

zn−1
{}dz must be evaluated

before
�+∞

0 {}dkρ and can come to analytical solutions. Since the
integrand of

� zn
zn−1

{}dz is the multiplication of voltage and current
terms, we first use the reciprocity formula (24) of [9] to interchange
the arguments of the first term in the multiplication. For example,
in (12b), the integral of dz can be modified as� zn

zn−1

V e
v (zr , z)I e

i (z, zs )dz = −
� zn

zn−1

I e
i (z, zr )I e

i (z, zs )dz. (20)

In this way, the voltage or current in both terms of the integrand
is measured at z excited by the source locating at zr and zs ,
respectively. Such an equivalent transformation can facilitate the
following derivation. For brevity, we use z� to denote the source
locating at zs or zr . When both z and z� locate inside the nth layer,
the voltage or current measured at z excited by the source at z� can
be evaluated by [9]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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���
(21)

where the superscript p can be e or h which stands for the TM
and TE wave mode, respectively. ± takes + when z > z� but
− when z < z�. Z p

n and Y p
n denote the characteristic impedance and

admittance of the nth layer, respectively, whose expressions are given

in (17) and (18) of [9]. E p
0n = e− j k p

zn |z−z�| is the primary field. Other
coefficients and variables are evaluated using D p

n = 1− 

�

p
n
�
�

p
n

e− j2k p
zndn , E p

1n = e− j k p
zn (dhf

n +dhs
n ), E p

2n = e− j k p
zn(dl f

n +dls
n ), E p

3n =
e− j k p

zn(dn+dhs
n +dl f

n ), and E p
4n = e− j k p

zn (dn+dh f
n +dls

n ) where dn =
zn − zn−1, dh f

n = zn − z, dhs
n = zn − z�, dl f

n = z − zn−1, and

dls
n = z� − zn−1. The global reflection coefficients

�
�

p
n and



�

p
n are

evaluated using the recursive expressions!�
�

p
n = �� p

n−1,n+ �
�

p
n−1 t p

n−1
�"�

1 + �
p
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�
p
n+1 t p
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� (22)

where �
p
i, j = (Z p

i − Z p
j )/(Z p

i + Z p
j ) is the Fresnel reflection

coefficient and t p
n = e− j2k p

zndn . When z� and z are not in the same
layer, we assume z� is in the mth layer and z is in the nth layer. The
voltage and current at z can be computed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V p(z)=V p(zm )
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p
zi di

1+

�

p
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(23)

if m < n, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(24)

if m > n. One should note that some variables in (23) and (24) with
the subscript i can be directly found by replacing n with i for the
corresponding variables in (21) and (22). V p(zm ) and V p(zm−1)

are evaluated using (21). Once Vp and I p are obtained, we can
derive the expressions of

� zn
zn−1

{}dz analytically. For convenience,
the terms in (21), (23), and (24) uncorrelated to z are discarded in
the following derivations. In other words, (Z p

n /2), (1/2), and (Y p
n /2)

in (21) are discarded. Only (1/(e jk p
zndl f

n )(1± 

�

p
n e− j2k p

zn dh f
n ) in (23)

and only (1/(e jk p
zndh f

n )(1± 

�

p
n e− j2k p

zndl f
n ) in (24) are kept in the

following derivations for
� zn

zn−1
{}dz. In addition, it is not allowed

to exchange two terms of the integrand since the first one has the
argument of (z, zr ) and the second one has the argument of (z, zs).
Meanwhile, the sign generated by the reciprocity transform, for
example, the negative sign in the right side of (20), is also discarded in
the following derivations. We assume that zr locates in the mr th layer
and zs locates in the ms th layer. Then, it is straightforward to obtain� zn

zn−1

{}dz =
�
t p
n − 1

�
− j2k p

zn

�
1+ 


�
p
n


�

p
n t p

n
�± 2
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p
n t p

n dn (25)

if mr < n and ms < n, and� zn

zn−1

{}dz =
�
t p
n − 1

�
− j2k p

zn

�
1+ �

�
p
n
�
�

p
n t p

n
�± 2

�
�

p
n t p

n dn (26)

if mr > n and ms > n. When the dipole source and the receiver locate
in two sides of the nth layer in which z locates, that is, mr > n > ms
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or mr < n < ms , the integration of dz from zn−1 to zn is

e− j k p
zndn dn

�
1+ �

�
p
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p
n t p

n
�± e− j k p

zndn

− j2k p
zn
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p
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�
p
n
��

t p
n − 1

�
(27)

where ± takes + for the integrand of V pV p but − for the integrand
of I p I p . It is worth mentioning that two terms of the integrands in
(12)–(14) and (17)–(19) for dz only take V pV p or I p I p after the
transforms similar to that used in (20). There is no V p I p term.

If the dipole source locates inside the nth layer (n = ms ) and the
receiver locates outside the nth layer or the receiver locates inside
the nth layer (n = mr ) and the dipole source locates outside the
nth layer, we can obtain

� zn
zn−1

{}dz by taking the integration of the
multiplication of (21) and (23) or (21) and (24) from zn−1 to zn .
The result is
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if n > mr or n > ms , and
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if n < mr or n < ms , where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(30)

In (28) and (29), ± takes + for the integrand of V pV p but − for
I p I p . When the source locates inside the nth layer, that is, n = ms ,
S is −1 for the integrands of V p

i V p
v , V p

v V p
v , I p

i I p
i , and I p

v I p
i but 1

for the integrands of V p
i V p
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v , and I p
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v . However,
when the receiver locates inside the nth layer, that is, n = mr ,
S is −1 for the integrands of V p
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i .
If both the dipole source and the receiver locate in the nth layer,

that is, n = ms = mr ,
� zn

zn−1
{}dz is calculated by taking the

integration of the multiplication of two terms in (21) from zn−1 to zn .
It is
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where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1 = zs + zr − 2zn−1, P2 = 2zn − zs − zr
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In (31), ± takes + for the integrand of V pV p but − for I p I p .
S0 is 0 and S1 is −1 for the integrands of V p

i V p
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v , and

I p
v I p
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v , and I p
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i . S5 is equal to S3
when zr < zs . However, it is equal to S4 when zr > zs .

VI. SENSITIVITY MATRICES DUE TO BOUNDARY CHANGES

In the aforementioned derivations, (12)–(14) and (17)–(19) are
only for the perturbation of relative permittivity in the nth layer.
However, in many geophysical applications, it is also necessary
to reconstruct the layer boundary positions. To find the sensitivity
matrices of the measured E and H at the receiver with respect to
the zn variation, we assume it has a small perturbation of δzn .
Therefore, a perturbed thin layer forms between zn and zn + δzn .
Compared with the dielectric parameters and field values in this
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thin layer before the perturbation, the relative permittivity changes
δ�r = �r,n − �r,n+1 after the perturbation. The horizontal com-
ponent of E-field in the perturbed thin layer remains unchanged.
However, the vertical component becomes ((�v,n+1Ez)/�v,n) since
the normal component of the flux is continuous across the layer
boundary. Therefore, the equivalent electric source J� in (4b) inside
the perturbed thin layer is

J� = jωε0

�
(�h,n − �h,n+1)(x̂ Ex + ŷEy) + �v,n+1

×
�

�v,n+1

�v,n
− 1

�
ẑEz

�
. (33)

We can see that the field perturbations δE and δH at the receiver
caused by δzn are the same as the those caused by the permittivity
change δ�h = �h,n − �h,n+1 and δ�v = �v,n+1((�v,n+1/�v,n) − 1)

inside the perturbed thin layer. We can still use (12)–(14) and
(17)–(19) to compute the sensitivity matrices for δzn . Because the
integral of dz is from zn to zn + δzn and δzn is tiny, (20) becomes� zn+δzn

zn

V e
v (zr , z)I e

i (z, zs )dz = −δzn I e
i
�
z+

n , zr
�
I e
i
�
z+

n , zs
�

(34)

where z+
n is a number a little larger than zn but smaller than

zn + δzn . Consequently, the sensitivity matrices for δzn are com-
puted by discarding the integral of dz in (12)–(14) and (17)–(19),
replacing the variable z in the voltage and current terms with z+

n ,
multiplying the horizontal component with �h,n − �h,n+1 and the
vertical component with �v,n+1((�v,n+1/�v,n)−1), and finally adding
them together. There is no need to use (25)–(32) to evaluate the
integration.

VII. IMPLEMENTATION OF NUMERICAL INTEGRATION

Before using the Gaussian quadratures to compute the Sommerfeld
integration, we want to emphasize three points. First, when the
source or receiver locates in the first or the last layer or when the
perturbed nth layer is the first or the last layer, (25)–(32) can be
simplified by placing a fictitious layer boundary in the infinity. Let
us take (25) as an example. If we put a fictitious layer boundary
zN very far from zN−1,



�

p
n becomes zero and t p

n also approaches
zero since dn is very large. Equation (25) degenerates into 1/( j2k p

zn).
Second, the integration path for kρ varying from zero to infinity must
be deformed from the real axis to avoid the integrand singularity. See
Fig. 4 of [10]. Third, the exponential decaying advantage of the inte-
grand will disappear if the source or the receiver approaches the layer
boundary or if they are close to each other. As a result, the integrand is
dominated by the oscillatory Bessel functions and the convergence of
the Sommerfeld integration will be slow. The subtraction technique
in [10] can be used to accelerate the convergence. In a nutshell,
we subtract the large-argument asymptotic form of the integrand
inside the integration and add the corresponding analytical integra-
tion solution later. The added analytical expressions can be found
in (33)–(36) of [10].

VIII. CONCLUSION

In this communication, the semianalytical expressions of sensitivity
matrices for the reconstruction of 1-D layered TI media are derived.
The 3-D dipole source can be either electric or magnetic and has
arbitrary polarization. The obtained mathematical expressions are
ready for computer coding and thus play an important role in solving
inversion problems of 1-D TI media illuminated by 3-D sources.

APPENDIX

The following integral formula of the 2-D Dirac’s function holds:�� +∞
−∞

dxdye− j
��

−kx +k�
x

�
x+
�
−ky +k�

y

�
y
�

= 4π2δ
�− kx + k�

x
�
δ
�− ky + k�

y
�
. (A1)

The following formula transforms the integral of dkx dky into the
integral of dkρ :�� +∞

−∞
f (kx , ky, kρ, z, zs , zr )dkx dkye− j [kx (xr −xs)+ky (yr −ys)]

=
� +∞

0
dkρ

� 2π

0
f (kx , ky, kρ, z, zs , zr )kρe− j kρ·ρ cos(ξ−φ)dξ

(A2)

where ξ is the angle between the vector kρ = x̂kx + ŷky and the
x̂-axis, while φ is the angle between the vector ρ = x̂(xr − xs ) +
ŷ(yr − ys) and the x̂-axis. In addition, the function f is the product
of two elements of the spectral domain DGFs and thus usually
contains the arguments of (kx/kρ)n or (ky/kρ)n which can be easily
transformed into the expressions of cos(nξ) or sin(nξ). As a result,
(A2) can be further simplified using the following identity:

1

2π

� 2π

0

cos
sin

nξe− j kρ·ρ cos(ξ−φ)dξ = (− j)n Jn(kρρ)
cos
sin

nφ (A3)

where Jn is the nth-order Bessel function.
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